type
status
date
slug
summary
tags
category
icon
password
书籍
 

理論

三層Webアーキテクチャ(Three-Tier Architecture)の「三層」とは、アプリケーションを3つの機能層に分割した構造を指します。これにより、各層が役割に応じて分離され、開発・運用の効率化やスケーラビリティの向上が図られます。

三層の構成

  1. プレゼンテーション層(Presentation Tier)
      • 役割: ユーザーインターフェース(UI)を提供し、ユーザーとアプリケーションの間でやり取りを行う層。
      • 技術例:
        • Webブラウザ
        • HTML、CSS、JavaScript
        • フロントエンドフレームワーク(React, Angular, Vue.jsなど)
      • 特徴:
        • ユーザーに見える部分を担当。
        • サーバーからデータを取得し、ユーザーに表示。
  1. アプリケーション層(Application Tier)
      • 役割: ビジネスロジックやアプリケーションの処理を担当。
      • 技術例:
        • サーバーサイドフレームワーク(Django, Spring, Express.jsなど)
        • プログラミング言語(Java, Python, Node.js, Rubyなど)
      • 特徴:
        • データの処理、検証、ルールの適用を行う。
        • プレゼンテーション層とデータ層の橋渡しを行う。
  1. データ層(Data Tier)
      • 役割: アプリケーションが利用するデータを保存・管理する層。
      • 技術例:
        • データベース(MySQL, PostgreSQL, MongoDBなど)
        • クラウドストレージ(Amazon S3, Azure Blob Storageなど)
      • 特徴:
        • データの保存、取得、更新を担当。
        • アプリケーション層からのリクエストを受けてデータを提供。

三層構造の利点

  1. モジュール性: 各層が独立しているため、機能の変更や追加が容易。
  1. スケーラビリティ: 特定の層(例: データ層やアプリケーション層)だけをスケールアップ・スケールアウト可能。
  1. 保守性: 問題が発生した際に、影響範囲を限定しやすい。
  1. 再利用性: 各層を他のアプリケーションやシステムでも利用可能。

実装例

ショッピングサイトの場合:
  1. プレゼンテーション層: 商品一覧やカートを表示するWebページ。
  1. アプリケーション層: 在庫状況の確認、注文処理ロジック。
  1. データ層: 商品情報、ユーザー情報、注文履歴を保存するデータベース。
このように、三層アーキテクチャはWebアプリケーションの基盤となる重要な設計思想です。

AWSアプリケーション設計における信頼性向上のポイント

1. データベースのスケーラビリティ

  • 課題: 高い読み取り負荷に対応できないデータベースはアプリケーションのボトルネックになる。
  • 解決策:
    • リーダーレプリカ: 読み取り負荷を分散するために、Amazon AuroraやAmazon RDSでリーダーレプリカを活用。
    • サーバーレスデータベース: Amazon Aurora Serverless v2は自動スケーリング機能を備え、変動する負荷に対応。

2. 静的コンテンツの管理

  • 課題: EBSボリュームを複数のインスタンスで共有できないため、同期が煩雑になる。
  • 解決策:
    • Amazon Elastic File System (EFS): 複数のEC2インスタンスやコンテナから同時にアクセス可能な共有ストレージ。動的にスケールし、管理負担を軽減。

3. 負荷変動への対応

  • 課題: リソースが不足するとアプリケーションが過負荷になり、信頼性が低下。
  • 解決策:
    • オートスケーリング: Amazon ECS(特にFargate)やAuto Scalingを活用して、負荷に応じてリソースを動的に調整。
    • サーバーレスアプローチ: AWS LambdaやAurora Serverlessを使用して、リソース管理をAWSに任せる。

4. コンテナ化とオーケストレーション

  • メリット:
    • 柔軟性: アプリケーションをコンテナ化することで、AWS FargateやECSで効率的に管理可能。
    • スケーラビリティ: Auto Scalingと連携して負荷に応じた調整が可能。
  • 関連サービス:
    • Amazon ECS: コンテナ化されたアプリケーションの管理を簡略化。
    • AWS Fargate: サーバーレスでコンテナを実行するためのマネージドサービス。

5. アプリケーションの設計パターン

  • ステートレスアーキテクチャ: アプリケーションをステートレス(状態を持たない)に設計することで、スケーリングを容易にする。
  • 分散設計: 各コンポーネント(アプリケーション層、データベース層、静的コンテンツ管理など)を分離して負荷分散を最適化。

結論

AWSで信頼性の高いアプリケーションを設計するには、スケーラビリティ、負荷変動への対応、静的コンテンツ管理を最適化することが重要です。
特に以下の技術が有効です:
  • データベース: Amazon Aurora MySQL Serverless v2
  • 静的コンテンツ: Amazon EFS
  • アプリケーション層: Amazon ECS + Fargate + Auto Scaling

実践

一問道場

質問 #342
ある企業がアプリケーションをAWSクラウドに移行しました。このアプリケーションは、Application Load Balancer(ALB)の背後にある2つのAmazon EC2インスタンス上で動作しています。
アプリケーションデータは、追加のEC2インスタンス上で稼働するMySQLデータベースに保存されています。このアプリケーションのデータベースの使用はリード(読み取り)に偏っています。
アプリケーションは、各EC2インスタンスにアタッチされたAmazon Elastic Block Store(Amazon EBS)ボリュームから静的コンテンツを読み込んでいます。この静的コンテンツは頻繁に更新され、各EBSボリュームにコピーされる必要があります。
アプリケーションの負荷は1日のうちで変動します。ピーク時には、アプリケーションがすべてのリクエストを処理できません。トレースデータによると、ピーク時にデータベースが読み取り負荷を処理できないことが判明しています。
このアプリケーションの信頼性を向上させるには、どの解決策が最適でしょうか?
A. アプリケーションを一連のAWS Lambda関数に移行する。Lambda関数をALBのターゲットとして設定する。静的コンテンツ用に新しい単一のEBSボリュームを作成する。Lambda関数を構成して新しいEBSボリュームから読み取るようにする。データベースをAmazon RDS for MySQLのマルチAZ DBクラスターに移行する。
B. アプリケーションを一連のAWS Step Functionsステートマシンに移行する。ステートマシンをALBのターゲットとして設定する。静的コンテンツ用にAmazon Elastic File System(Amazon EFS)ファイルシステムを作成する。ステートマシンを構成してEFSファイルシステムから読み取るようにする。データベースをAmazon Aurora MySQL Serverless v2のリーダーDBインスタンス付き構成に移行する。
C. アプリケーションをコンテナ化する。アプリケーションをAmazon Elastic Container Service(Amazon ECS)クラスターに移行する。アプリケーションをホストするタスクにはAWS Fargate起動タイプを使用する。静的コンテンツ用に新しい単一のEBSボリュームを作成する。この新しいEBSボリュームをECSクラスターにマウントする。ECSクラスターにAWS Application Auto Scalingを構成する。ECSサービスをALBのターゲットとして設定する。データベースをAmazon RDS for MySQLのマルチAZ DBクラスターに移行する。
D. アプリケーションをコンテナ化する。アプリケーションをAmazon Elastic Container Service(Amazon ECS)クラスターに移行する。アプリケーションをホストするタスクにはAWS Fargate起動タイプを使用する。静的コンテンツ用にAmazon Elastic File System(Amazon EFS)ファイルシステムを作成する。このEFSファイルシステムを各コンテナにマウントする。ECSクラスターにAWS Application Auto Scalingを構成する。ECSサービスをALBのターゲットとして設定する。データベースをAmazon Aurora MySQL Serverless v2のリーダーDBインスタンス付き構成に移行する。

解説

この質問では、アプリケーションの信頼性を向上させるための適切なソリューションを選択する必要があります。アプリケーションの現状の課題を整理すると以下の通りです:

課題の整理

  1. データベースの読み取り負荷がピーク時に処理できない。
    1. → データベースをスケーラブルなサービスに移行し、読み取り負荷を分散させる必要があります。
  1. 静的コンテンツの管理が非効率。
    1. → 静的コンテンツを複数のEBSボリュームにコピーする代わりに、共有ストレージを活用する必要があります。
  1. アプリケーションの負荷変動への対応。
    1. → スケーリング機能を活用して動的なリソース管理を行う必要があります。

各選択肢の解説

A. AWS Lambda + Amazon RDS for MySQL Multi-AZ

  • メリット: Lambdaはサーバーレスでスケーラブル。RDSのMulti-AZ構成により高可用性を確保。
  • デメリット: LambdaがEBSボリュームを直接読み取るのは不可能。また、サーバーレスは長時間のリクエスト処理には不向き。
  • 評価: 静的コンテンツの要件を満たさないため不適。

B. AWS Step Functions + Amazon Aurora MySQL Serverless v2

  • メリット: Aurora MySQL Serverless v2はスケーラブルなリーダーレプリカをサポート。EFSで静的コンテンツを共有可能。
  • デメリット: Step Functionsはワークフローオーケストレーション向けで、アプリケーション全体をホストするのには適さない。
  • 評価: アプリケーションの性質に合わないため不適。

C. ECS(Fargate) + Amazon RDS for MySQL Multi-AZ

  • メリット:
    • アプリケーションをコンテナ化し、Fargateを使うことで管理負担を軽減。
    • RDS Multi-AZ構成はデータベースの可用性を確保。
    • Auto Scalingにより、負荷変動に対応可能。
  • デメリット: EBSボリュームは共有ストレージとして複数タスクで使用できない。
  • 評価: 静的コンテンツの要件を満たさないため不適。

D. ECS(Fargate) + Amazon Aurora MySQL Serverless v2

  • メリット:
    • FargateとAuto Scalingでアプリケーションの負荷変動に対応。
    • Aurora MySQL Serverless v2はリーダーレプリカをサポートし、読み取り負荷を分散可能。
    • EFSを使用することで静的コンテンツを簡単に共有可能。
  • デメリット: 特になし。
  • 評価: すべての要件(データベースのスケーラビリティ、静的コンテンツの共有、負荷変動への対応)を満たしているため適切。

正解: D

理由:
選択肢Dは以下のように、アプリケーションの信頼性を向上させるためのすべての課題を解決します。
  1. データベースの読み取り負荷: Aurora MySQL Serverless v2はスケーラブルで、リーダーレプリカを使って読み取り負荷を分散可能。
  1. 静的コンテンツの共有: EFSは複数のコンテナ間で簡単に共有可能で、EBSよりも管理が容易。
  1. 負荷変動への対応: FargateとAuto Scalingでリソースを動的に調整可能。
相关文章
クラウド技術の共有 | AWS Site-to-Site
Lazy loaded image
EKSでのWordPressデプロイ:KCNA-JP試験対策 (Kubernetes実践編)
Lazy loaded image
初心者向け!コンテナ化WordPressサイト構築ガイド(超詳細版)
Lazy loaded image
EFSを活用!AWS EC2でDockerを使ったWordPressサイト構築
Lazy loaded image
529-AWS SAP AWS 「理論・実践・一問道場」VPCエンドポイント
Lazy loaded image
528-AWS SAP AWS 「理論・実践・一問道場」Migration Evaluator
Lazy loaded image
343-AWS SAP AWS 「理論・実践・一問道場」AWS_IAM 認証 + AWS X-Ray341-AWS SAP AWS 「理論・実践・一問道場」Aurora Serverless
Loading...
みなみ
みなみ
一个普通的干饭人🍚
最新发布
TOKYO自習島
2025-4-27
第1回:イントロダクション
2025-4-21
第1回:イントロダクション
2025-4-18
第1回:オリエンテーション/意思決定と会計情報
2025-4-18
建物業法の基本と免許-59問
2025-4-10
宅建士过去问速刷:小南小白陪你拿证-001
2025-4-7
公告

🎉 欢迎访问我的博客 🎉

🙏 感谢您的支持 🙏

📅 本站自 2024年9月1日 建立,致力于分享我在 IT・MBA・不动产中介 等领域的学习与实践经验,并推动 线上线下学习会 的自主开展。

📚 主要内容

💻 IT・系统与开发

  • 系统管理:Red Hat 等
  • 容器与编排:Kubernetes、OpenShift
  • 云计算:AWS、IBM Cloud
  • AI 入门:人工智能基础与实践
  • 技术笔记与考证经验

🏠 不动产 × 宅建士

  • 宅建士考试笔记

🎓 MBA 学习笔记

  • 管理学、经济学、财务分析等

🔍 快速查找内容(标签分类)

由于网站目前没有专门的设计,可能会导致查找信息不便。为了更快找到你感兴趣的内容,推荐使用以下标签功能 进行搜索!
📌 定期更新,欢迎常来看看!
📬 有任何建议或想法,也欢迎留言交流!